Contents

1 Main features of DH 250 intelligent metal variable area flowmeter
2 Measuring principle of DH250 intelligent metal variable area flowmeter
5 Technical parameter of DH250 intelligent metal variable area flowmeter
6 Transducer type of DH 250 intelligent metal variable area flowmeter
8 Transducer material of DH250 intelligent metal variable area flowmeter
8 Outline dimension of DH 250 intelligent metal variable area flowmeter
10 Indicator of DH250 intelligent metal variable area flowmeter
11 Selection methods of DH 250 intelligent metal variable area flowmeter
16 Selection table of DH250 intelligent metal variable area flowmeter
17 Electrical connection of DH250 intelligent metal variable area flowmeter
23 Installation precaution of DH250 intelligent metal variable area flowmeter
24 Customer maintenance of DH 250 intelligent metal variable area flowmeter
25 Customer maintenance of DH250 intelligent metal variable area flowmeter
26 Operating instructions of DH250 intelligent metal variable area flowmeter
26 Operating instructions of DH250 intelligent metal variable area flowmeter
27 Common fault and treatment of DH 250 intelligent metal variable area flowmeter
28 Appendix

Main Features

DH250 intelligent metal variable area flowmeter has local display type and intelligent remote type. Intelligent remote type provides customers with very flexible options such as pointer display, LCD display for instantaneous flowrate or total flow, standard two-wire 4~20mA current output, HART communication, etc. Besides, the meter adopts advanced microprocessor and high quality industrial components to ensure superior performance in various applications.

According to different installation pattern of measuring tube, when flow direction is from bottom to top, from left to right or from right to left, different installation type can be selected as per the customer requirements. Matching M6 indicator on the measuring tube will be the intelligent remote type. M6 indicator is the multifunction digital magnetic measurement transmitter designed for DH250 intelligent metal variable area flowmeter, which core is the MCU and adopts magnetic transducer to measure magnetic field change through digital signal processing technology such as digital filtering, software amendment, etc. Two-line LCD display provides a good interactive interface, and current signal output and Hart communication provide more selections for customers.

- Very suitable to small diameter and low velocity
- Simple structure , reliable performance, low maintenance and long service life
- Low requirements for straight pipe
- Wide turndown ratio: 10:1
- Local display type and intelligent remote type
- Single-axis sensitive indicator
- Non contact magnetic coupling system to ensure stable data transmission
- Can be used in flammable and explosive dangerous situations
- Protection grade: IP65

Main features of intelligent M6 indicator

- Measure the angle displacement of magnetic field
- LCD display for instantaneous flowrate or total flow alternately
- Parameter setting can be realized
- Data recovery function
- HART Communication
- Single-axis sensitive indicator
- Backlight LCD display
- Intrinsical safe type and flame proof type available

Measuring Principle

Detecting element of metal variable area flowmeter consists of a tapered tube extending from bottom to top and a float inbuilt in tapered measuring tube vertically. Working principle is shown as Fig. 1: when fluid flows upward into annular space between tapered tube and float, the float will move upward along the tube due to lifting force formed by differential pressure of up and down end of float. When the flowrate of fluid increases, the float will displace much more; on the contrary, when the flowrate of fluid decreases, the displacement of float will reduce correspondingly, too. Therefore, the position of float is decided by the flowrate of fluid, as well as the flowrate determines annular area between the maximum outside diameter of float and inner wall of tapered tube. When fluid keeps a stable flowrate, the float locates in a dynamic balance state, the annular area between float and tapered tube also keeps constant. At this moment, there are three forces acting on the float: downward weight W, upward floating force F and fluid dynamic force P, and these forces locate in balance. According to Bernoulli equation of hydrodynamics, force equilibrium equation and fluid continuity principle, we can calculate the average instantaneous flowrate flowing into the annular area, so the float flowmeter is also called variable area flowmeter.

A high-performance permanent magnet steel is embedded inside float. By this way, the magnetic field will be produced around the float. When flowrate of fluid tends to stable and float locates in dynamic balance state, the surrounding magnetic field distribution reaches stable, too.

By means of the flowrate indicator mechanically connected with tapered tube, the magnetic signal of the float will be transmitted in non-contact form. In another word, indicator is able to detect and process with the flowrate in the mode of magnetic transducer, and finally shows the flowrate by pointer on indicator scale board, or intelligently process to display instantaneous and total flow in LCD indicator and outputs a standard 4-20mA current signal.

Measuring Principle

Basic formula of volumetric flowmeter Q is:

$$Q = \alpha \varepsilon \Delta F \sqrt{\frac{2gV_f(\rho_f - \rho)}{\rho F_f}} \qquad m^3 / s$$

If the float is hollow body, Q is:

$$Q = \alpha \varepsilon \Delta F \sqrt{\frac{2g(G_r - V_f \rho)}{\rho F_r}} \qquad \text{m}^3 / s$$

Thereinto: α -----flowrate factor, determined by float shape

 ϵ -----gas expansion parameter; ϵ = 1 for liquid

 \triangle F----annular flowing area, m²

g-----local gravity acceleration, m/s²

V_f-----float volume, m³

 ρ_f -----density of float material, kg/m³

ρ-----density of measured fluid; for gas, density of gas upstream of float, kg/m³

F_f.....cross-sectional area of float at maximum diameter, m²

G_f.....float weight, kg

The relationship between the annular area and lifting height of the float is shown as below, when structure design is confirmed, d and β are constants. Formula contains quadratic term of h, usually, this nonlinear term can not be neglected. Only when the tapered angle is little, it can be considered as linear approximately.

$$\triangle F = \pi \left(dhtg \frac{\beta}{2} + h^2 tg^2 \frac{\beta}{2} \right) = ah + bh^2 \qquad m^2$$

Thereinto: d-----Maximum diameter of the float, m

h-----Lifting height of float (starting from ID of tapered tube = D_{max} of float), m

 β -----Tapered angle of the tapered tube

a, b-----Constant

Measuring Principle

According to process mode of measuring signal, metal variable area flowmeter can be divided into:

a. Local display: rotate follow-up magnet in the local indicator by the magnetic coupling with magnet inbuilt in the float to drive the pointer to indicate the flowrate on scale directly (Fig. 2 as below).

b. Intelligent remote display: rotate follow-up magnet in the intelligent indicator by the magnetic coupling with magnet inbuilt in the float to drive the sensing magnet and pointer, at the same time the change of the magnetic field is converted to electrical signal by magnet transducer, and after process by A/D converter, digital filter, microprocessor processing, D/A converter, to LCD display instantaneous and total flowrate (Fig. 3 as below).

Darhor Technology CO., LTD.

Technical Parameter

- Measuring range
 - Water (20°C) 10 ~ 300000 L/h
 - Air (20°C, 0.1013MPa) 0.7 ~ 3000 m³/h
 - Refer to flowrate table, special flowrate can be ordered.
- Turndown ratio: 10:1 for standard
- Accuracy: $\pm 1.5\%$ for local, $\pm 1.0\%$ for remote
- Rated pressure: DN15 ~ DN50 4.0MPa (Max DN15: 32MPa, DN25: 25MPA, DN50: 20MPa) DN80 ~ DN250 1.6MPa (Max DN80: 10MPa, DN100: 6.4MPa, DN125: 4.0MPa, DN150: 4.0MPa, DN200: 2.5MPa, DN250: 2.5MPa)
- Pressure loss: $1.5 \sim 60$ kPa
- Viscosity: DN15: <30mPa · s
 - DN25: <250mPa · s

DN50 ~ DN250: <300mPa · s

- Fluid temperature: Local: $-80 \sim +300^{\circ}$ C
 - Remote: $-40 \sim +150^{\circ}$ C High temperature: 350° C
- Ambient temperature: Local: $-40 \sim +80^{\circ}C$

Remote: $-40 \sim +50^{\circ}C$

- Storage temperature: $-20 \sim +60^{\circ}$ C
- Relative humidity: $\leq 85\%$
- Connection type: Standard: DIN2501

Special: specified by user

- Protection grade: IP65
- Remote type

Cable connector: M20*1.5

Power supply: 24VDC

Output signal: 4 ~ 20mA DC, HART

LCD display: Numerical range for instantaneous flowrate: 0 ~ 50000

Numerical range for total flow: 0 ~ 99999999

Explosion proof: Intrinsical safe: Exia IIC T6

Flameproof: Exd IIB T6

Transducer Type

Transducer is also named as measuring tube, consisting of tapered tube, float, guider, brake and mounting flange.

Classified by pipe installing type:

Vertical installing type: FA (Fig. 4), FAP (Fig. 5), FAPV (Fig. 6) Horizontal installing type: FD (Fig. 7), FDPV (Fig. 8)

Classified by corrosive characteristics of measured fluid:

Standard type: FA, FD Corrosion resistant type: FAP, FAPV, FATi, FDPV

Classified by state of measured fluid:

Liquid: Common type Gas: FAZ gas damping type (Fig. 9)

Classified by temperature of measured fluid:

High temperature: Cooling jacket FAT (Fig. 10), FDT (Fig. 11) Low temperature: Heating jacket FAT, FDT

Transducer Type

Transducer Material

Model	Measuring Tube	Flange	Float	Tapered Tube
F/R	1Cr18Ni9Ti OCr18Ni12Mo2Ti 304, 304L, 316, 316L 317, 317L	1Cr18Ni9Ti 0Cr18Ni12M₀2Ti 304, 304L, 316, 316L 317, 317L	1Cr18Ni9Ti 0Cr18Ni12Mo2Ti 304, 304L, 316, 316L 317, 317L, AI, Ti	1Cr18Ni9Ti OCr18Ni12M₀2Ti 304, 304L, 316, 316L 317, 317L
F/P	1Cr18Ni9Ti with PTFE lining	1Cr18Ni9Ti	PTFE Nickel base alloy(276), B1, B2; Ti	PTFE
F/PV	P∨DF	P∨DF	PVDF 316, 316L, Ti	PVDF
F/Ti	Ti	Ti	Ti Nickel base alloy(276), B1, B2	Ti

3	Flange	Dimensio	n (ANS	I B16.5 1	50 lb)			DN/Pressure	Flang	ge Dime	ensior	n (Stan	dard	DIN2	501)
DN	D	k	b	d ₃	f	n	d ₂	DN/PN	D	k	b	d_3	f	n	d ₂
1/2"	88.9	60.5	11.2	35.1	1.6	4	15.7	15/4.0	95	65	16	45	2	4	14
1"	108.0	79.2	14.2	50.8	1.6	4	15.7	25/4.0	115	85	18	68	2	4	14
2"	152.4	120.7	19.1	91.9	1.6	4	19.1	50/4.0	165	125	20	102	3	4	18
3"	190.5	152,4	23.9	127.0	1.6	4	19.1	80/1.6	200	160	20	138	3	8	18
4"	228.6	190.5	23.9	157.2	1.6	8	19.1	100/1.6	220	180	20	162	з	8	18
5"	254.0	215.9	23.9	185.7	1.6	8	22.4	125/1.6	250	210	22	188	3	8	18
6"	279.4	241.3	25.4	215.9	1.6	8	22.4	150/1.6	285	240	22	218	3	8	22
8"	342.9	298,5	28.4	269.7	1.6	8	22.4	200/1.6	340	295	24	268	з	12	22
10"	428.4	362.0	30.2	323.9	1.6	12	25.4	250/1.6	405	355	26	325	3	12	26

Note: unit: mm

Outline Dimension

	Outline Dimension						Outline Dimension						
Transdu	fransducer Type FA, FAP, FAPV, FATi			Transducer Type FD, FDPV									
Dime	nsion	Н	H1	H2	h1	h2	Dime	nsion	н	HI	H2	h1	h2
	15	250	-	-	-	-		15	250	400	-	-	-
	25	250	-	•	-			25	250	400	-	-	-
	50	250	-	-	-	-		50	300	400	-	-	-
DN	80	250	-		-		DN	80	400	400	-	-	-
2.11	100	250	-	-	-	-		100	400	400	-	-	-
	125	400	-	-	-	-		125	500	500	-	-	-
	150	400	-	-	-	-		150	500	500	-	-	-
	200	500	-	-	-	-		200	650	650	-	-	-
	250	500	-	-	-	-		250	750	800	-	-	-

	Outline Dimension						Outline Dimension						
Transducer Type		FAT				Transducer Type FDT							
Dime	nsion	Н	H1	H2	h1	h2	Dime	nsion	Н	H1	H2	h1	h2
	15	150	90	-	-	-		15	250	100	100	110	120
	25	150	100	-	-	-	DN	25	250	100	100	120	120
	50	150	115	-	-	-		50	300	118	115	150	120
	80	150	132	-	-	-		80	400	164	124	170	120
DN	100	150	145	-	-	-		100	400	164	130	200	120
	125	-	-	-	-			125		-	-	-	-
	150	-	-	-	-	-		150	-	-	-	-	-
	200	-			-	-		200	-		-		-
	250	-	-	-	-	-		250	-	-	-	-	-

Indicator

There are two kinds of indicators: local indicator and remote one. Local indicator means displaying the flowrate by means of mechanical pointer on site; for remote indicator, it can display on site and convert flowrate signal into 4-20mA current signal, so as to control the flowing process of fluid by connecting with control system.

Local display indicator

Common local indicator M8 (Fig. 13)

Punch forming of stainless steel and polishing the surface, mechanical pointer indicates flowrate on site.

Remote indicator

Remote indicator M6 with function of HART communication (Fig. 14)

Intrinsical safe & flameproof available, mechanical pointer indicates flowrate on site, LCD display mode is: instantaneous flowrate, total flow with Hart communication function.

Note: Every kind of indicator can be freely combined with any transducer to be various flowmeters with different specifications.

Selection Methods

1. Collection of process data

- Ingredients, density and viscosity of measured fluid;
- Maximum flowrate, minimum flowrate and normal flowrate;
- Maximum operating pressure;
- Maximum temperature and minimum temperature.

2. Maximum flowrate and minimum flowrate must conform to the flowrate range of Table 1 and Table 2.

Table 1 Flo	owrate Table		Float Material 1, CrNi Steel,Ho 2, PVDF,Ti			
	Fig. et No.	Water	L/h	Air m ³ /h	Pressure	Loss kPa
DH	Float No.	(0.1013MPa	abs, 20°C)	(0.1013MPa abs, 20°C)	(Special ord pressure l	der for low oss)
		1	2	1	1	2
15	F16.5 F16.5a F16.6 F16.6a F16.7 F16.8	160 200 250 300 400 600	100 120 160 200 250 400	4.5 6.0 7.5 9.0 12 18	1.5 2.0 2.5 3.5	1.5 1.5 2.0 2.0 2.5 3.5
25	F26.1 F26.2 F26.2a F26.3 F26.3a F26.3a F26.4	1000 1600 2000 2500 3000 4000	600 1000 1200 1600 2000 2500	30 45 60 75 90 120	1.5 3.0 3.5 3.5 8.0	1.5 3.0 3.5 3.5 8.0
50	F56.1 F56.1a F56.2 F56.2a F56.3	6000 8000 10000 12000 16000	4000 5000 6000 8000 10000	180 240 300 360 480	3.0 3.0 4.0 4.0 8.0	3.0 3.0 4.0 8.0
80	F86.1 F86.1a F86.2	25000 30000 40000	16000 20000 25000	750 900 1200	14.0 14.0 22.0	14.0 14.0 22.0
100	F106.1 F106.1a F106.2	60000 80000 100000	40000 50000 60000	1800 2400 3000	30.0 30.0 44.0	30.0 30.0 44.0
120	F126.1 F126.2	100000 125000	80000 100000	3000	45.0 48.0	45.0 48.0
150	F156.1 F156.2	125000 150000	100000 125000	-	46.0 50.0	46.0 50.0
200	F206.1	200000	-		60.0	-

Darhor Technology CO., LTD.

Selection Methods

Table 2 F	lowrate Table	F	Float Material: 1: CrNi Steel,HC 2: PTFE,PVDF,Ti			
		Water	L/h	Air m³/h	Pressure	Loss kPa
DN	Float No.	(0,1013MPa	abs, 20°C)	(0,1013MPa abs, 20°C)	(Special ord pressure l	ler for low
		1	2	1	1	2
15	F16.0 F16.1 F16.1a F16.2	10 25 30 40	25	0.7 0.9 1.2	1.5 1.5 1.5 1.5	1.5
13	F16.20 F16.3 F16.40 F16.40 F16.5 F16.5 F16.5 F16.6 F16.7 F16.7 F16.70 F16.7	50 60 100 120 200 250 300 400 500 600	40 50 60 100 120 160 250 300 400	1.5 1.8 2.4 2.8 3.5 4.5 6.0 7.5 9.0 12 15 18	1.5 1.5 1.5 1.5 1.5 1.5 3.0 3.0 3.0 3.0 3.0 3.0 3.5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3.0 3.0 3.0
20	F20.1 F20.2 F20.2a	1000 1600 2000	600 1000	30 45 60	1.5 2.0 3.5	1.5
25	F26.1 F26.1a F26.2 F26.2a F26.3	1000 1200 1600 2000 2500	600 800 1000 1200 1600	30 35 45 60 75	1.5 1.5 3.0 3.0 3.5	1.5 1.5 1.5 1.5 3.0
	F26.3a F26.4 F26.4a F26.5	3000 4000 5000 6000	2000 2500 3000	90 120 150 180	3.5 8.0 16.0	3.0 3.5 3.5
32	F32.2 F32.3	4000 6000 8000	4000	180 240	12.0 16.0	8.0
40	F40.1 F40.2 F40.3	8000 10000	4000	120 180 240	10.0 12.0 14.0	10.0
50	F56.1a F56.2a F56.2a F56.3a F56.3a	8000 10000 12000 16000 20000	4000 5000 6000 8000 10000 12000	180 240 300 360 480 600	3.0 3.0 4.0 8.0 8.0	3.0 3.0 3.0 4.0 4.0
65	F65.1 F65.2 F65.2 F65.3 F65.3 F65.3	16000 20000 25000 30000 35000	10000 16000 20000	480 600 750 900 1000	6.0 8.0 10.0 14.0 20.0	6.0 8.0 12.0
80	F86.1 F86.2 F86.2a	25000 30000 40000 50000	20000 25000	750 900 1200 1500	14.0 14.0 22.0 22.0	8.0 8.0 14.0
100	F106.1 F106.1a F106.2	60000 80000 100000	40000 50000	1800 2400 3000	30.0 30.0 44.0	25.0 25.0
125	F126.1 F126.2	100000 125000	80000 100000	3000	45.0 48.0	35.0 40.0
150	F156.1	125000	125000	-	46.0	42.0
200 250	F206.1 F256.1	200000 300000	150000 200000	-	60.0 60.0	60.0 60.0

3. DN calculation

DN calculation for liquid

Volumetric flowrate of measured liquid Q_t (L/h)

Put density and maximum flowrate of measured liquid into Formula 1, and calculate the flowrate of water—standard medium; then, find out the corresponding diameter and float number from flowrate table and put the flowrate of water provided by standard float No. into Formula 1 again, accordingly, make out the flowrate of measured liquid; finally, adjust the flowrate into an integer so that to get the scale range of measured liquid.

Mass flowrate of measured liquid Q_m (kg/h)

Calculation formula of scale range is as follows while calculation method is as above:

Thereinto:

Qt -----Max volumetric flowrate of measured liquid (L/h)

Qm ----- Max mass flowrate of measured liquid (kg/h)

Q_s-----Flowrate of standard medium water (L/h)

 ρ_{f} -----Density of float (kg/m³)

 ρ_t -----Density of measured liquid (kg/m³⁾

 ρ_s -----Density of water (kg/m³)

Float density of various materials as follows:

Material	CrNi Steel	PTFE	PVDF	Nickel-alloy	Ti	AI
Denstiy (t/m³)	7.85	3.4	3.8	8.3	2.1	2.7

Example

Some liquid to be measured, its operating density is 850 kg/m³ and max. flowrate is 2400 L/h, please calculate its diameter, float No. and scale range.

Solution: density of float $\rho_f = 7800 \text{ kg/m}^3$, density of water $\rho_s = 1000 \text{ kg/m}^3$

Put $\rho_f = 850 \text{ (kg/m}^3)$ and $Q_t = 2400 \text{ (L/h)}$ into Formula 1 to get $Q_s = 2188.86 \text{ L/h}$

Then, look up the flowrate table and find out: DN25, float No. F26.3, $Q_s = 2500$

Put Q_s into Formula 1 again to get $Q_t = 2741.23$

Then adjust it into an integer, get the scale range of this fluid: $270 \sim 2700$ L/h.

www.darhor.com

DN calculation for gas

Gas is easily affected by temperature and pressure and quite different from liquid. Therefore, at the time of calculating flowrate, we do not only consider the density factor, but also take account of the influences from temperature and pressure, so it is extremely important to provide correct temperature and pressure of gas to be measured under operating condition.

Standard flowrate of measured gas Q_N (Nm³/h)

 $Q_{s} = \sqrt{\frac{\rho_{st}}{\rho_{s}} \times \frac{P_{s}}{P_{t}} \times \frac{T_{t}}{T_{s}} \times Q_{N}}$ (3)

Operating flowrate of measured gas Q_t (m³/h)

 $Q_{s} = \sqrt{\frac{\rho_{st}}{\rho_{s}} \times \frac{P_{t}}{P_{s}} \times \frac{T_{s}}{T_{t}}} \times Q_{t} \qquad (4)$

Mass flowrate of measured gas Q_m(kg/h)

 $Q_{\rm S} = \sqrt{\frac{1}{\rho_{\rm s} \times \rho_{\rm t}}} \times Q_{\rm m} \qquad (5)$

Thereinto:

Q_N-----Max. volumetric flowrate of gas under standard condition (Nm³/h)

Qt-----Max. volumetric flowrate of gas under operating condition (m³/h)

Q_m-----Max. mass flowrate of gas under operating condition (kg/h)

 Q_s -----Flowrate of standard medium air (m³/h)

 ρ_s -----Density of air under standard condition (kg/m³)

 ρ_{st} -----Density of gas under standard condition (kg/m³)

 ρ_t -----Density of gas under operating condition (kg/m³)

Ps-----Absolute pressure of air under standard condition (0.1MPa)

Pt-----Absolute pressure of gas under operating condition (MPa)

Ts-----Absolute Temp. of air under standard condition (293.15K)

T_t-----Absolute Temp. of gas under operating condition (K)

Example

Some gas to be measured, oxygen, its average molecular weight: 32; process pressure: 0.4MPa (gauge pressure), process temperature: 25° C, Max. flowrate: 35Nm³/h, please calculate its diameter, float No. and scale range.

Solution: $\rho_s = 1.204 \text{kg/m}^3$, $P_s = 0.1 \text{MPa}$, $T_s = 293.15 \text{K}$ $\rho_{st} = 1.331 \text{kg/m}^3$, $P_t = 0.5 \text{MPa}$, $T_t = 298.15 \text{K}$, $Q_N = 35 \text{Nm}^3/\text{h}$ Put the acquired data into Formula 3 to get $Q_s = 16.60 \text{ m}^3/\text{h}$ Look up flowrate table, find out: DN 15, Float No: F16.8, $Q_s = 18$ Put Q_s into Formula 3 again, make out $Q_N = 37.96$ Then adjust it into an integer and get scale range of measured fluid: $3.8 \sim 38 \text{ Nm}^3/\text{h}$

1. Mainboard of flowmeter with Hart function (Fig. 15)

Brief introduction

Mainboard of flowmeter with Hart function is a new kind of digital flow transmitter with Hart communication function. It can configure on site to display instantaneous or total flow on large screen of LCD.

Features

- Configurate by hand-held communicator or configuration software of PC
- $4 \sim 20$ mA output with HART protocol digital communication (two wires)
- Communication meets HART protocol standard
- HART communication does not affect 4 ~ 20mA analog output
- Power supply of HART transmitter: 12 ~ 36 VDC
- Damping: $0 \sim 32s$ adjustable
- Ambient temperature: $-20 \sim +70^{\circ}$ C

Wiring

Open the front cover of indicator, a blue connecting terminal on top of the base (Fig. 16) can be seen, then carry out wiring according to wiring marks on terminal.

Meter adjustment on site

Flowmeter mainboard has two kinds of function modes: data setting mode and current minitrimming mode. Factory setting is data setting mode.

- Data setting mode can set configuration data, flowmeter data and reset total flow into zero.
- Current minitrimming mode can minitrim 4mA and 20mA current.

Connection between meter and safety barrier

2. K1, K2 limit alarm switch

Brief introduction

K1, K2 limit alarm switch is installed in the M6 indicator. K1 is lower limit, K2 is upper limit, alarm point can be set at will. K1, K2 alarm switch consists of two parts. One part is in the indicator and simply named KG22 which is composed of SJ3.5N transducer and cutting disc on the rotation axis (Fig. 17) and can set alarm point within the entire flow range at will and indicate on the dial by the positioning pointer. The other part is external isolated switching amplifier WE77/ Ex (Fig. 18: transistor relay).

WE77/ Ex is divided into WE77/ Ex-1 and WE77/ Ex-2. WE77/ Ex-1 (or WE77/ Ex-1-G) is only applicable to one KG22 and acts on K1 or K2; WE77/ Ex-2 (or WE77/ Ex-2-G) is applicable to two KG22 and acts on K1 and K2.

Fig. 17 K1, K2 Limit Alarm Switch

Fig. 18 WE77/ Ex Transistor Relay

KG22 technical data

Rated pressure	8VDC
Current loss Effective area open Effective area close	≥ 3 mA < 1mA
Self inductance	160 µH is related to hazardous place
Self capacitance	20 nF is related to hazardous place
Ambient temperature	-25~+100°C
Protection grade	IP65

WE77 technical data

Technical data	АС Туре	DC Type				
	WE77/Ex-1	WE77/Ex-1-G				
	WE77/Ex-2	WE77/Ex-2-G				
Power supply						
Standard	220VAC/45~65Hz					
Special type	24, 42, 110, 127VAC	15~70VDC				
Power consumption	About 3.5VA	Max 6.3W				
Input intrinsical safe type	DIN19243 or NAMUR	DIN192430 NAMUR				
Protection grade	[EEx ia] IIC or [EEx ib] IIC	[EExia] IICor [EExib] IIC				
Explosion proof	Ex-79/2043 X	Ex-81/2146 X				
Open circuit voltage	8VDC (13.5VDC)	8VDC (12.7VDC)				
Short circuit current	8 mA (31mA)	8 mA (21mA)				
Safe distributed inductar	ice / capacitance					
[EEx ia] IIC	3 mH/230 nF	2 mH/230 nF				
[EEx ib] IIC	31 mH/609 nF	70 mH/800 nF				
Output extrinsical safe ty	pe					
Switch type	WE77/ Ex-1: one switching terminal WE77/ Ex-2: two switching terminals	WE77/ Ex-1: one switching termina s WE77/ Ex-2: two switching termina				
Contact capacity	AC: 4A/250V/500A/cos=0.7	DC: 220V/0.1A: 60V/0.6A: 24V/4A				
Display "relay working"	Use LED	Use LED				
Meter housing						
Material	LY12					
Installation Installed on standard bar (35mm) as per DIN46 227 or DIN 43 603 dimention						
Connection Screw thread self-open type, tightly fix terminal, max cross-section area 2*1.5mm						
Protection type IP20, as per DIN40 050						
Environment Noise: as per DIN40 040, ambient temperature: -20~+60°C, max relative humidity75%						

Adjustment of WE77/ Ex-1 & WE77/ Ex-2

Isolated switching amplifier includes power supply, transistor rectifier amplifier and output middle relay. WE77/ Ex-1 with a safety control circuit. WE77/ Ex-2 with two safety control circuit and its output is equipped with wiring terminal of open circuit. It is also easy to change wiring to become closed circuit operation or closed circuit operation with open circuit monitoring.

According to the following table, replace cable jumper to get various working condition. Indicate "relay closure" with one LED.

Circuit connection of KG22 with isolated switcher WE77/ Ex

Darhor Technology CO., LTD.

Electrical Connection

Wiring diagram of KG22 with WE77/ Ex-1

Wiring diagram of KG22 with WE77/ Ex-2

Installation and outline dimensional drawing

Installation Precaution

To ensure meter operation performance and measuring accuracy, please pay attention to:

- The size of upstream and downstream pipe should be the same as meter size. Connecting flange or screw thread should also match with that of meter. The upstream straight pipe (h1) must be five times nominal diameter of meter. The downstream straight pipe is not less than 250mm;
- For vertical installation, fluids flow from bottom to top and verticality keeps less than 2°; for horizontal installation, the level angle should be less than 2°;
- When install flowmeter on process pipeline, bypass pipe should be installed to handle with malfunction conveniently or not to affect production during flushing;
- To ensure meter accuracy, more than 5D straight pipe should be at upstream and 250mm straight pipe at downstream;
- Require to equip magnetic filter if ferromagnetic material contained in fluids;
- Require to equip filter between valve and straight pipe once solid impurity exists in measured medium;
- For gas measurement, pipe pressure should be not less than 5 times pressure loss of meter to ensure float working stably;
- When the fluid temperature is high over 220°C or so low as easy to crystallize, it needs to take measures of thermal insulation protection; jacket type should be applied for heating or cooling;
- It is necessary that all standards of the pipe flange, fastener, sealing gasket should conform to the standard of meter flange to ensure meter operation normally;
- Generally speaking, the metal variable area flowmeter do not require maintenance after normal operation. Some meter defects always happened during commissioning due to some dirty material in the pipe to cause float be blocked, and the pointer of indicator is stopped fixedly. At this time, first close the valves on both sides of the flowmeter, then disassemble the upper flange of the flowmeter, move out the float to clean and then reassemble. Please notice that the flange nuts should be tightened up evenly and hold the gasket;
- The flange on the process pipeline must be coaxial and parallel to the flange of the meter. To avoid the pipe vibration, suggest supporting the pipe. Control valve should be installed at the downstream of the flowmeter;
- Because the meter transmits signal by magnetic coupling, in order to ensure the meter performance, ferromagnetic matter should not exist around the meter 10m at least;
- Gas meter is calibrated under specified pressure. If the gas at the meter outlet is discharged into atmosphere directly, it would produce pressure loss at the float, and cause the data distortion. Therefore, require to install an exhausting valve at the meter outlet under this condition;
- For flowmeter with LCD display, ensure to avoid sun shining indicator directly during installation, or would reduce life of LCD.
- Pay attention to install meter with PTFE liner. PTFE will be distorted under uneven pressure, so flange nuts should not be tightened unevenly to avoid damaging PTFE liner.

Table of Max. torque as below:

DN	Max. Torch	Bipitch Bolt	
15	0,93	4 × M12	
25	2.2	4 × M12	
50	5.5	4 × M16	
80	4.7	B × M16	
100	4,9	8 × M16	
125	5.3	8 × M18	
150	6.8	8 × M20	

Installation Precaution

Meter Installation Drawing

Customer Maintenance

- Because the meter belongs to precise instrument, should handle with care during meter transportation, installation, storage and usage, and avoid overstress in installation; meanwhile, not change the relative position of indicator and transducer to ensure the meter accuracy;
- There will be ferromagnetic particles deposited on the float in operating; if impurity is too much, it will block float deadly or affect measuring accuracy. Therefore, please clean pipe and float regularly. If necessary, mount magnetic filter at the meter inlet and clean it regularly;
- Due to inside of indicator is electronic components, during disassembly the cover of housing, must tighten the screws of the cover and seal the housing to prevent harmful materials such as liquid ferromagnetic or corrosive gas from entering the meter. At the same time, ensure housing grounded reliably;
- When use the meter first time, should notice the following two points: Liquid measurement: open valve slowly to avoid water head attacking the meter; Gas measurement: before running, do not exert pressure on pipe, or if valve is opened suddenly, float would rush to brake to damage meter. Therefore, open valve slowly. Recommend a damping device to be equipped to reduce float vibration at utmost.
- For intelligent remote indicator, first, ensure correct wiring, check up and then power on meter. Otherwise, easy to damage meter. Key operation must conform to the manual. If operate blindly, it will cause data stored in EEPROM lost or damaged;
- Meter should be stored in the place with temperature -20° C ~ $+60^{\circ}$ C, relative humidity $\leq 85\%$, no sunshine and corrosive gas;
- When open housing of explosion proof flowmeter to maintain on site, should turn off the power;
- When ambient temperature is lower than -30°C or higher than 85°C, LCD may appears stasis or blind screen, however, LCD won't damage under this condition; when temperature reverts to normal range, LCD display normally.

Keyboard Instruction

Normally, double-key is for flowmeter operating model, K2S key and K1Z key all located on PCB, and need to open cover of LCD indicator to see.

K2S key (which is short for S key hereinafter)

- In operating mode, press S key for 3s to enter looking through configuration parameter mode and press S key to see about every parameter.
- In password input mode, press S key to enter parameter setting menu tree; on submenu set parameter revision state, it is setting parameter key, which also is data storage key on submenu set parameter storage state.

K1Z key (which is short for Z key hereinafter)

- In operating mode, press Z key for 3s to entering password setting mode;
- In setting mode, it is cursor moving key;
- In looking through configuration parameter mode, press Z key to return operating mode.

Data storage way

In data setting mode, after data setting, press S key when down arrow is twinkling to realize data storage function.

Setting of span, decimal point

Span and decimal point are set once out of factory, also can use S, Z key to reset.

Setting procedure is as follow:

- Press S key to enter data setting mode, meanwhile, sign bit become twinkling, it means that can amend sign bit.
- To press S key again can switch over positive & negative of data (plus is shown as up arrow)
- Press Z key, the first digit can be amended when it becomes twinkling, at this moment, press S key for a long time or for several times, setting data circulates from 0 ~ 9.
- Press Z key again, can set second to fifth digit by turns; setting method is the same as the setting for first digit.
- After setting the fifth digit, press Z key to set decimal point. Decimal point can be set when the four decimal points become twinkling at the same time, press S key now, decimal point will switch over circularly.
- After decimal point setting, press Z key, it can be stored once left down arrow becomes twinkling.
- Press S key, store setting; press Z key, sign bit becomes twinkling, it means that can reset parameter.

Operating State

When flowmeter is operating, it displays instantaneous flowrate, total flow by turns. If total flow is more than 99998, it displays as \times 1000, right of LCD displays as " \times 1000"

Zero Clearing Operation of Total Flow

Operation content

In operating mode, enter password input mode, input password 00001 to enter total flow clearing mode, and select total flow clearing, after this to return operating mode.

Operation method

In operating mode, press Z to enter password input mode, combining Z key (cursor moving) with S key (data setting), input password 00001, press Z key to move cursor to down arrow of left screen, which down arrow is twinkling. Press S key to enter total flow clearing mode, press S key to select data of right down screen as YES (YES is for clearing, NO is for not clearing). Press Z key to carry out total flow clearing and return to operating mode.

Operation interface process

Process for Adjusting Zero of the Instantaneous Flowrate

Parameter Setting

Operation content

Submenus belonging to parameter setting tree are: instantaneous flowrate unit setting, lower limit of span setting, high limit of span setting, damping time, lower limit alarm setting, high limit alarm setting, media state selection, density setting, float density setting etc.

No:	Operation procedure	Menu tree content	Setting content		
1	In operating mode, press Z key for 3s	Password input 00002			
2	Press S key	Instantaneous flowrate unit selection	m ³ /h, T/h, L/h, kg/h, Nm ³ /h, kg/m, m ³ /m, L/m		
3	Press Z key	Lower limit of span setting			
4	Press Z key	Upper limit of span setting			
5	Press Z key	Damping time			
6	Press Z key	Lower limit alarm setting			
7	Press Z key	Upper limit alarm setting			
8	Press Z key	Media state selection	Liq, Gas		
9	Press Z key	Gas density	kg/m ³		
10	Press Z key	Gas pressure	MPa		
11	Press Z key	Gas temperature	К		
12	Press Z key	Media density setting	kg/m ³		
13	Press Z key	Float density setting	kg/m ³		
14	Press Z key	Total flow display	Tow screens display alternatively, unit is as setting value		
6.		Instantaneous flowrate display	Tow screens display alternatively, unit is as setting value		
15	No pressing keys in 2m will return to running mode automatically				

Notice: 1. Media state selection is set by manufacturer before goods out of factory.

2. Gas pressure, gas density and gas temperature are set and displayed just for gas metal variable area flowmeter.

3. If upper & lower limit alarm function are not selected, they can not be set automatically, or measured value will be affected.

Operation method

In operating mode, press Z to enter password input mode, combining Z key (cursor moving) with S key (data setting), input password 00002, press Z key to move cursor to down arrow of left screen, which down arrow is twinkling. Press S key to enter the first item in parameter setting mode (instantaneous flowrate unit selection submenu), Press Z key to enter next submenu (lower limit of span setting), then, with the same method to enter next submenu. Operation for every content is shown as following operation interface process.

Enter parameter setting operation interface process

Example for parameter setting

Set L/H as instantaneous flowrate unit, operation process is shown as below:

Notice: 1. Press Z key to select after setting.

- 2. Setting method of medium state selection is the same as above.
- After entering configuration data setting, it will return to normal display without any key pressing in 2m.

Set 2.0000kg/m³ as liquid density, operation procedure is shown as below:

Looking Through Setting Parameter

In operating mode, press S key for 3s to look through setting parameter quickly, looking through sequence is the same as parameter setting operation interface process.

Corresponding Relationship between Instantaneous Flowrate Unit and Total Flow Unit:

Instantaneous flowrate unit	Total flow unit
Nm ³ /H, Hm ³ /H, m ³ /H, m ³ /m, SPEC	m ³
L/H, L/m	L
T/H, T/m	T
KG/H	KG
G/H	G

	Fault	Reason	Treatment
	Slight	Medium fluctuation	Increase damping
Dithering Moderate		Medium flow state	Install pressure or current stabilizer or increase damping
	Severe	Medium pulse and atmospheric pressure are instable or user's parameter doesn't conform to the actual	Provide correct parameter

Pointer stops moving	Block of float	Adjust guider of float and brake to be concentric
----------------------	----------------	--

	Incorrect installation	Reinstall
	Liquid density changes greatly	Calculate compensation factor
Large measurement error	Gas affected by temperature and pressure	Temperature and pressure compensation
	Loose parts	Push the pointer with finger to calibrate, if incorrect, adjust the location of parts

	Incorrect wiring	Rewiring
No current output	Bad output board	Change PCB
	Calibration value is lost	Data recovery

	Incorrect wiring	Rewiring
No display on the spot	Incorrect power supply	Check power supply
	Poor contact of LCD module	Reinstall LCD module

LCD always displays zero or	Incorrect parameter setting of span and zero	Reset
full span on the spot	PCB fault	Change PCB

Incorrect total flow output	Incorrect parameter setting	Reset
	PCB fault	Change PCB

Appendix 1 Relationship Between Velocity and Flowrate

DN]				Velocity	(m/s)				
(mm)										
					Flowrate	(m ¹ /n)				
10	0.00283	0.02827	0.08482	0.14137	0.28274	0.56549	0.84823	1.13097	1.41372	2.82743
12	0.00636	0.06362	0.19085	0.31807	0.63617	1.27235	1.90852	2.54469	3.18086	6.36173
20	0.01131	0.11309	0.33929	0.56549	1.13097	2.26195	3.39292	4.52389	5.65487	11.3097
25	0.01767	0.17672	0.53014	0.88357	1.76715	3.53429	5.30144	7.06858	8.83573	17.6715
32	0.2895	0.28953	0.86859	1.44765	2.89529	5.79058	8.68588	11.5812	14.4765	28.9529
40	0.04524	0.45239	1.35717	2.26195	4.52389	9.04779	13.5717	18.0956	22.6195	45.2389
50	0.07069	0.70687	2.12058	3.53429	7.06858	14.1372	21.2058	28.2743	35.3429	70.6858
65	0.11945	1.19459	3.58377	5.97295	11.9459	23.8918	35.8377	47.7356	59.7295	119.459
80	0.18096	1.80956	5.42867	9.04779	18.0956	36.1911	54.2867	72.3823	90.4779	190.956
100	0.28274	2.82743	8.4823	14.1372	28.2743	56.5487	84.823	113.097	141.372	282.743
125	0.44178	4.41786	13.2536	22.0893	44.1786	88.3573	132.536	176.715	220.893	441.786
150	0.63617	6.36173	19.0852	31.8086	63.6173	127.2345	190.852	254.469	318.086	636.173
200	1.13097	11.3097	33.9292	56.5487	113.097	226.195	339.292	452.389	565.487	1130.973
250	1.76715	17.6715	53.0144	88.3573	176.715	353.429	530.144	706.585	883.573	1767.15

Appendix 2 Manufacture Standard of Metal Variable Area Flowmeter

GB/T	6844-93	Metal Variable Area Flowmeter
JJG	257-94	Verification Regulations of Rotameter
GB/T	15464-1995	General Technical Specifications of Instruments Packing